

More than Just Wood Low-Temp Cure Powder Coating Technology

ACA Member Webinar July 13, 2023 Kevin Biller ChemQuest Powder Coating Research The ChemQuest Group, Inc. kbiller@chemquest.com

Presentation Overview

The concept of low-temperature-cure powder coatings has loomed since the dawn of powder coating technology. In recent years, novel technology has emerged that can be cured at ever-lower temperatures.

This presentation explores the following:

- Why Low-Temperature Cure?
- Heat-Sensitive Substrates
- Dealing with Conductivity
- Low-Temp Cure vs. Ultra-Low Bake
- Low-Temp Cure Chemistries
- Ultra-Low-Bake Thermosets
- UV-Curable Powder Coatings
- Future Trends

ChemQuest: Actionable Insights for Success

Our Mission is Enabling Our Clients to:

- **Build enterprises** that challenge established thinking and drive transformation.
- Gain competitive advantage through distinctive, targeted, and substantial improvements that sustain profitable growth.
- Unlock new and hidden insights empowering an organization's smart risk-taking, catalyzing innovation excellence and value creation.
- **Be successful** because our success emanates from yours.

ChemQuest by the Numbers

1976	Year the firm was established
~130	Total consultants and technical staff
25	Minimum years of experience in specialty chemicals for senior personnel
100%	Percent of our work that is proprietary, offering a full portfolio of services under NDA

Four Pillars of Expertise

Deliver distinctive, thorough, actionable, confidential, and professional work and support our clients in every aspect of sustained, profitable growth, including:

Technology Development

Design, formulate, test, accelerate, and scout innovative technology.

- For suppliers, manufacturers, and users
- Advanced lab facilities tailored to CASE R&D and polymer processing
- Services from molecular architecture to sophisticated application research
- Client-owned IP
- Education courses to enhance the capabilities and knowledge of your internal team

Why Low-Temperature Cure?

Powder Coating Benefits

Low-Temp Cure Opportunities

Heat Sensitive Substrates

Pre-Assembled Parts

Plastic Substrates

Wood Substrates

Heat-Sensitive Substrates

Pre-Assembled Parts

Plastic Substrates

Substrate	Composition	HDT (0.46 MPa Load)	Powder Type
ABS	Acrylonitrile Butadiene Styrene	98°C	UV
Acetal Copoly	Polyoxymethylene (ethylene)	160°C	TS
Acrylic	Acrylic	95°C	UV
Nylon 6	Polyamide	160°C	TS
PC	Polycarbonate	140°C	UV
PC/ABS	Polycarbonate/ABS Blend	80-100°C	UV
HDPE	High Density Polyethylene	85°C	UV
PET	Polyethylene Terephthalate	70°C	N/A
PMMA	Polymethylmethacrylate	105°C	UV
PP	Polypropylene	100°C	UV
PS	Polystyrene	95°C	UV
PVC	Polyvinyl Chloride	90°C	UV
Noryl GTX	Polyamide/polyphenylene ether	231°C	TS
PEEK	Polyetheretherketone	160°C	TS

© Copyright 2023, The ChemQuest Group, Inc. All Rights Reserve

Wood-Based Products

Substrate	Composition	Maximum Temperature	Powder Type
MDF	Medium-Density Engineered Board	135°C	TS/UV
HDF	High-Density Engineered Board	150°C	TS/UV
Wood Composites	Wood Pulp plus PVC & HDPE, LDPE	150°C	TS/UV
Closed-Grain Woods	Maple, Beech, Birch, Cherry, Poplar, Rubber Tree	140°C	TS/UV
Open-Grain Woods	Oak, Hickory, Ash	100°C	UV

Dealing with Conductivity

Applying Powder to a "Non"-Conductive Surface

Low-Temp Cure vs. Ultra-Low Bake

Low-Temp Cure vs. Ultra-Low Bake

Low-Temperature Cure (LTC)

A product offering any significant reduction in curing temperature. Typically, conventional chemistry modified with more active catalysis.

Ultra-Low Bake (ULB)

Sub-150°C designed for alternate substrates and unique curing processes.

- Thermoset
- UV Cure

What I need right now is more catalyst!

Low-Temp Cure - Chemistries

Thermosets

Chemistry	Standard Cure	Low-Temp Cure
Ероху	15′ @ 175°C	15′ @ 150°C
Epoxy Polyester	15′ @ 190°C	15′ @ 160°C
Polyester	15′ @ 190°C	15′ @ 160°C
Polyurethane	15′ @ 200°C	20′ @ 150°C
Acrylic	20′ @ 175°C	20' @ 160°C

Infrared can reduce dwell time.

CONFIDENTIAL © Copyright 2023, The ChemQuest Group, Inc. All Rights Reserved **Epoxies**

- Catalysis with Imidazoles, Lewis Acids, etc.
- Available in Curing Agent

Imidazole	Chemical Structure	Molecular Weight	Appearance	Storage Life (years)	Melting Point ℉/℃	Rec PHR
Imicure [®] AMI-2		82	Pale yellow powder	2	279–293 137–145	1–4
Curezol 2PZ	HNNN	144	Pale pink powder	3	279–293 137–145	1–4
Curezol 2P4MZ	NH NH	158	White powder	3	325–360 163–182	3–6
Curezol C17Z		306	White powder	3	187–196 86–91	3–5

Phenolic Curing Agents

Grade	Ph–OH E.W. (g/eq)	Softening Point*1 (°C)	Gel time*² (sec)	Color (G,max.)	Characteristics/Use
KD-404	230-260	73-85	40-80	1	Fast cure
KD-405	230-260	73-85	100-160	0.5	High adhesion

Epoxy-Polyester Hybrids

Polyurethane

- OH Polyester Low Melt Viscosity
- Alcure 4470 Triazole blocked Diisocyanate
- Tin Catalysis

Curative	Exterior Grade	NCO Equivalent Weight	Tg <u>°</u> C (approx.)	Baking Schedule	Performance Characteristics
Alcure 4431	Yes	333	55	20 min @ 180°C	Reduced yellowing and improved UV resistance compared to Alcure 4430
Alcure 4450	No	275	64	20 min @ 160°C	Polymeric aromatic isocyanate for low-temperature cure Savings over aliphatic curatives Not recommended for long-term UV exposure
Alcure 4470	Yes	212	58	30 min @ 160°C	Polymeric aliphatic isocyanate E- caprolactam free, Triazole blocked Low-temperature cure

GMA Acrylics

- Lower EEW (epoxide equivalent weight)
- Increased functionality
- Catalysis

General Purpose Almatex® Resins PD-7610 High Tg Short Gel-time PD-6300 **Better Pigmentation** PD-7690 **Better Adhesion** Lower Odor & Cost Higher Reactivity PD-4219 Lower GMA Content PD-9200 Dual Functionality GMA-Hydroxy Improved Flow PD-1700 PD-4409 Polyester Compatible & Better Pigmentation PD-4411

High Performance Almatex[®] Resins

Ultra-Low Bake – Thermoset Chemistries

Ероху

- Homopolymerization
- More catalyst (latency helps)
- Cure as low as 125°C

CRYLCOAT®	Ratio	Acid #	Visc.a	Tg(C°)	Cure	Benefit
• 1574-6	50/50	71	5000	50	140°C	Low cure for MDF

Resin	Acid Value mg KOH/g _(approx)	Viscosity mPa.s 200°C	Tg °C (approx.)	Baking Schedule	Performance Characteristics
Albester 5190	31-37	2000-2600	51	10 min @ 150°C 25 min @ 130°C	Excellent storage stability Excellent solvent resistance No blooming at low temperatures

GMA Acrylics

- GMA Acrylic Low EEW (High GMA conc.)
- Additol P-791 Polyanhydride (Allnex)

Product Specification

	Limits
Appearance	Pale granules
Acid value alcoholic (mg KOH/g)	310-325
Melting range (°C)	80-90
Color, b-value	Max. 15

Starting Formulation

Component	Weight (%)
ADDITOL [®] P 791	24.0
Acrylic Resin EEW (g/eq) 500 - 550	69.7
Flow Promoter	3.0
UV Stabilizer	1.5
UV Co-Stabilizer	1.5
Benzoin	0.3

Unsaturated Polyester

Unsaturated Polyesters

- Uracross XP-752 (industrial)
- Uracross XP-755 (architectural)

Amorphous
T_g 50-55°C
WPU 500

Peroxide Catalysis

• Uracross 3307 • Uracross 2307 • Uracross 2307 • Uracross 2307 • Crystalline • Tm 100°C • T_g -58°C • WPU 200

Bio-Based Polyester-Amide

Battelle Technology

- COOH Functional
- Cure with TGIC or PT-910
- 85% Bio-based COOH Polyester-Amide Resin
- 135 to 180°C Cure Window
- Excellent Smoothness
- Excellent Impact Resistance
- Excellent UV Durability

Low-Temp Cure Caveats

Extrusion Conditions are Critical

- Low dwell time
- Cooler barrel temps

Storage Stability

- May require reefer transportation
- Controlled storage temp and application system
- Shelf-life limitations

Application Impact fusion

Smoothness?

UV-Curable Powder Coatings

UV-Cure Powder Process

UV Lamps

Mercury Vapor

- H Mercury
- D Iron Doped
- V Gallium Doped

LED

- 365 nm
- 385 nm
- 395 nm
- 405 nm

UV Lamps

UV-Cure Lamp Types

UV Lamp	Wavelength Range (nm)	Powder Coating Type
Standard Mercury	240-320	Clear Coats
Iron Doped Mercury	320-400	Clear Coats and Metallics
Gallium Doped Mercury	410-440	Pigmented and Thick Film

UV-Curable Powder Chemistries

Free Radical UV Cure

- Photoinitiator responds to UV energy, ٠ forming free radicals
- Chain-growth polymerization is • initiated
- Can be inhibited by oxygen •

Free Radical-Cured Binders

Acrylated/Methacrylated

- Polyester
- Ероху
- Urethane
- Homopolymerized

Unsaturated Polyester

- Divinyl ether crosslinker 73:27
- Maleate vinyl ether copolymerization

Low T_q, Low Melt Viscosity

- Processing conditions
- Storage stability

Understanding Photoinitiators (PIs)

A photoinitiator is a molecule that creates reactive species when exposed to radiation.

Absorption bands of the PI should be matched with the emission spectrum of the light source.

May be better suited to through cure or surface cure, clear, or pigmented

0.5% to 5.0% formula weight DOE to determine the best level for a formulation

Benefits of UV Cure

Separates melt from cure

Low processing temperature

Smaller footprint

Lower energy costs

Shorter time

Heat-sensitive substrates and assembled parts

Line-of-sight curing

Pigment loading and film thickness limitations

Limited selection of raw materials and chemistry

Transportation and storage stability

Capital expenditure

Material cost

UV-Curable Powder

Work conducted under ESTCP WP-0801 Ultraviolet Curable Powder Coatings with Robotic Curing for Aerospace Applications

Robotic UV-Cure Powder Coatings

Recent effort has been made to cure UV powder coatings on large objects in the field.

This work, conducted by SAIC (Science Applications International Corporation) under a U.S. government grant, has investigated the use of robotics to melt and cure the powder coating after deposition to a surface.

The powder is:

- Applied conventionally to the substrate using an electrostatic method
- Melted by robotically passing an infrared emitter over the surface
- Molten film is cured under swiped UV light; both the IR and UV devices can be affixed to the same articulated robot arm

Robotic UV-Curable Powder Coating Process

UV-Curable Powder Coating

11-22-2010 58 8-15-2010

3,700 hrs Salt Fog

Powder Chemistries: UV Cure vs. Ultra-Low Bake

UV Cure

- Shorter time
- Small footprint
- Lowest energy use

Ultra-Low Bake

- Standard equipment
- All colors/thicknesses
- Low energy use
- More chemistries available

UV Cure

- Line of sight
- Cap ex
- Film thickness
- Physical storage stability

Ultra-Low Bake

- Manufacturing challenges
- Smoothness
- Limited temperature
- Chemical storage stability

Future Trends

Future Trends

More than just MDF

Composites, molded plastics

Real Michael Addition (malonate) Chemistry (allnex) WO-2022236519 – Powder

Coating Composition Blend

Low-Temp Cure Summary

Low-temperature-cure (LTC) powders can significantly reduce energy costs.

UV-cure powder coating technology is alive and well.

Ultra-low-bake (ULB) powders open up a world of alternative substrates to the powder coating market.

Novel technology is being introduced by raw material suppliers.

Application to non-conductive substrates schemes are well-known and scalable.

Powder coating producers are investing in the development and commercialization of LTC and ULB powder technologies.

Thank you Questions? Comments? Feel free to email me:

kbiller@chemquest.com

Deep Industry Knowledge – Extensive Industry Relationships – Decades of Industry Experience

https://chemquest.com

